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Geodesic domes and fullerenes

By T. TARNAI

Department of Mechanics, Faculty of Civil Engineering, Technical University of
Budapest, Budapest, Miegyetem rkp 3, H-1521 Hungary
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The structural form of geodesic domes, composed of pentagons and hexagons, played
an important role in understanding the structure of carbon clusters. In this paper an
analogy between geodesic domes and fullerenes is investigated. A brief survey is
given of the geometry of geodesic domes applied in engineering practice, in particular
of the geodesic domes bounded by pentagons and hexagons. A connection is also
made between these sorts of geodesic domes and the mathematical problem of the
determination of the smallest diameter of n equal circles by which the surface of a
sphere can be covered without gaps. It is shown that the conjectured solutions to the
sphere-covering problem provide topologically the same configurations as fullerene
polyhedra for some values of n. Mechanical models of fullerenes, composed of equal
rigid nodes and equal elastic bars are also investigated, and the equilibrium shapes
of the space frames that model C,q, Cq, and C,,, are presented.
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1. Introduction

From visual inspection one can easily discover an analogy between the structure of
Cgo and the inner layer of the structure of the great U.S. pavilion of R. B. Fuller at
the 1967 Montreal Expo. This analogy and other geodesic structures of Fuller were
responsible for the name of Cy,: Buckminsterfullerene (Kroto et al. 1985). This is not
the first time that Fuller’s geodesic domes have helped researchers to understand the
structure of matter. In the early 1960s Fuller’'s geodesic domes, especially his
tensegrity spheres, inspired Caspar & Klug (1962) to develop the principle of quasi-
equivalence in virus research.

The aim of this paper is to investigate the analogy between geodesic domes
bounded by pentagons and hexagons and fullerenes. It is possible to construct a
network of this sort of geodesic dome by covering the sphere with circles (Tarnai &
Wenninger 1990; Pavlov 1990). We shall consider the mathematical problem of
determining of the smallest diameter of n equal circles by which the surface of a
sphere can be covered without gaps, and shall show that the conjectured solutions to
the sphere-covering problem provide topologically the same configurations as
fullerene polyhedra for some n.

An easy way of visualizing the structure of fullerenes is to make a physical model,
for example, to assemble equal angle planar trivalent connectors and equal length
plastic tubes. Mechanically, the polyhedron-like structure so obtained can be
considered as a space frame with equal rigid nodes and equal elastic bars such that
three bars meet and form angles of 120° at each node. The closed net shape arises by
deformation of the bars in a state of self-stress. The edges of the polyhedron obtained
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Figure 1. Geodesic dome in the town of Baku, Azerbaidzhian, erected in 1976. (With the kind
permission of Dr G. N. Pavlov.)

will be curved, not straight. We have made calculations to determine the equilibrium
shape of the space frames modelling C,g, Cq, and C,,,. The main results are presented
below.

2. Geodesic domes and spherical honeycombs

Although, to my knowledge, the first geodesic dome was designed by W. Bauersfeld
and was constructed in the early 1920s in Germany, geodesic domes are associated
with the name Richard Buckminster Fuller. Fuller called a dome geodesic if
the lines on the surface of the sphere producing a three-way grid are geodesics, that
is, great circles of the sphere. These can be obtained in the easiest way if equal regular
triangulation is made on all faces of an icosahedron, and the resulting network is
projected from the centre of the icosahedron onto the surface of its circumsphere.
Later the term geodesic dome was used for all polyhedral structures resulting from
triangulation of the spherical surface having icosahedral symmetry where the edge
lengths of the triangles in the network do not differ too much from each other. The
U.S. pavilion at the 1967 Montreal Expo is considered as one of the best examples
of a geodesic dome, however, it is a geodesic dome only in the latter, more general
sense, since the lines producing the triangular subdivision on the bottom part of the
spherical surface are not great circles but small circles of the sphere. Over the years
numerous triangular subdivision methods have been developed (Tarnai 1987, 1990).

If the subdivision frequency along an edge of the icosahedron is divisible by 3 then
it is easy to make a hexagonal geodesic network from a triangular one by removing
the edges. In contrast to geodesic domes of a triangular network, however, geodesic
domes with hexagonal networks as single-layer bar-and-joint structures are not
rigid. In engineering, hexagonal networks can be applied for single-layer space frames
with rigid nodes (an example of this as a dome made of ‘dog-bone’ elements can be
seen in Fuller (1969)), or for plate structures (figure 1); or for one of the layers
of double-layer grids. Goldberg (1937) introduced a classification for hexagonal
tessellations on the surface of an icosahedron, which also incorporated skewed
arrangements. These have been used intensively in virus research (Caspar & Klug
1962), and this idea has also appeared in the fullerene field (Klein e al. 1986). It is also
possible to apply Goldberg’s skewed arrangements to geodesic domes (Tarnai 1984,

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. Model of a spherical ‘hexagonal” net with equal edges and with icosahedral
symmetry.

Figure 3. Arrangement of hexagons of equal edge lengths in the plane around an individual ()
pentagon with D; symmetry and (b) heptagon with D, symmetry.

1989, Tarnai & Wenninger 1990), but these sorts of domes have not yet been used in
practice.

In a triangular subdivision of a spherical surface with icosahedral symmetry —
except for the icosahedron itself — the edge lengths in the network are not all equal.
A network composed of several hexagons and 12 pentagons can be constructed on the
spherical surface with icosahedral symmetry so that the edge lengths are equal
(figure 2). In such a network, however, angles of hexagons can differ significantly
from the 120° of regular hexagons. In an extreme case, where the common edge
length is very small compared with the radius of the sphere, the local spherical
networks are approximately planar, and we find that hexagons are elongated in a
circumferential direction around the pentagon (figure 3a) and that the angles of the
hexagons vary between 108° and 144°. If an individual heptagon were to be
introduced into a planar ‘hexagonal’ network it would have the opposite effect: the
hexagons would be elongated in the radial direction around the heptagon (figure 3b)
and the angles of the hexagons would vary between 128.6° and 102.8°. If pentagons
and heptagons are introduced together, a network can be obtained where the angles

Phil. Trans. R. Soc. Lond. A (1993)
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148 T. Tarnay

Figure 4. Polyhedron model of locally minimum covering of the sphere by 16 equal circles.

of hexagons remain close to 120°. In nature there are several examples of spherical
honeycombs in which some heptagons are involved (Tarnai 1989). Although I do not
know of examples of geodesic domes with 5-, 6-, and 7-gonal faces, numerous
examples of geodesic domes, especially radomes, exist with triangular network
having 5-, 6-, and 7-valent vertices. A remarkable structure can be seen in Schonbach
(1971).

The large hypothetical fullerenes are not spherical (Kroto 1988), so it is probably
not necessary to have heptagons in the network to keep bond angles close to 120° and
thus minimize the potential energy. It is worth mentioning, however, that Mackay
& Terrones (1991) suggested a carbon structure fitted to an infinite periodic
minimum surface. Because of the negative gaussian curvature of such a surface, it
should contain polygons with more than six sides as well as hexagons.

3. Covering the sphere by circles

The different subdivision procedures worked out for the construction of a geodesic
dome usually result in distorted hexagons. Pavlov (1990), however, has developed an
efficient method for subdividing a spherical surface, which results in inscribed
polyhedra (of a sphere) bounded by plane pentagons and hexagons. The geodesic
dome in figure 1 was constructed in this way. The circumscribed circles of the
polyhedron faces yield an economical way of covering a sphere. Pavlov’s method
opened up an interesting possibility for building a geodesic dome: to construct a
dome with overlapping circles as structural elements (Tarnai & Wenninger 1990).

The problem of how to economically cover a sphere by circles is well known in
geometry. In the simplest case, where all the circles are identical, the problem is as
follows (Fejes Téth 1972): how may a sphere be covered by n equal circles (spherical
caps) so that the angular radii of the circles are as small as possible ? Mathematically
proven solutions are known for » = 2-7 and for » = 10, 12 and 14; conjectured
solutions exist for the other values of » up to 20 and for some sporadic values of
n > 20.

It turns out that there is a correspondence between the topology of arrangcmcnts
found in the proven and conjectured solutions of the covering problem and various
distinct physical problems. Tarnai & Gdspar (1991) analysed the covering problem

Phil. Trans. R. Soc. Lond. A (1993)
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Geodesic domes and fullerenes 149

Figure 5. Polyhedron model of locally minimum covering of the sphere by 32 equal circles.
(Reprinted from Tarnai & Wenninger (1990) with permission of Structural Topology (Montreal) and
Dr M. J. Wenniner.)

for small numbers of circles on the basis of the structural form of coated vesicles.
Tarnai (1991) pointed out that the coated vesicles identified by Crowther et al. (1976)
and an additional one having a truncated icosahedron form provide the best covering
configurations for n = 16, 20 and 32. Interestingly, among the conjectured solutions
resulting in local optima, for n = 16, 18 and 32 we obtained topologically the same
configurations as those of Kroto (1988) published for C,q, C,,, and Cg, (Tarnai &
Gaspar 1991). The configurations of the conjectured solutions of the covering
problem for n = 16 and 32 are shown in figures 4 and 5.

Inspection of the structure in figure 5 reveals that the length of an edge separating
a pentagon from a hexagon is greater than the length of an edge separating two
hexagons. This property of covering the sphere by 32 equal circles (considering only
its tendency and not the actual lengths) is consistent with the measurements of Cg,
by Hedberg et al. (1991) who found the bond lengths in the five-member rings to be
larger than the lengths of bonds fusing the six-membered rings.

4. Stick models of fullerenes

A simple way to appreciate the shape of fullerene is to construct a physical model
in which rigid planar trivalent nodal connectors represent the atoms and flexible
plastic bars (tubes) of circular cross-section represent the bonds. From a mechanical
point of view the model may be considered as a polyhedron-like space frame whose
equilibrium shape is due to self-stress caused by deformation of bars. We suppose
that the bars are equal and straight in the rest position and that they are inclined
relative to each other at every node with angle of 120°. The material of the bars is
assumed to be perfectly elastic and that Hooke’s law is valid. All the external loads
and influences are neglected and only self-stress is taken into account. Then we pose
the question: What is the shape of the model subject to these conditions ? To answer
this question we apply the idea used for coated vesicles by Tarnai & Gdspar (1989).

Let us first investigate this mechanical problem for the model of C,q having
tetrahedral symmetry (Kroto 1988), and arrange the structural elements in a plane
and join the corresponding bar ends and nodes. As a result, a ball-like space frame

Phil. Trans. R. Soc. Lond. A (1993)
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150 T. Tarnai

Figure 6. Equilibrium of a node. (a) Three bars bending at a node. (b) Closed triangle of
moment vectors in a plane perpendicular to line v.

is obtained whose bars are no longer straight but curved. Bending the bars generates
a state of self-stress in the frame. Due to symmetry, the bars of the frame take on
plane-curve form and thus do not twist. This allows us to surmise that the bars of the
space frame are under pure bending. The axis of a bar in pure bending takes on the
form of a circular arc in the plane of the bend. The bending moments (couples) can
be represented by vectors which are perpendicular to the plane of bending.

Let us consider the equilibrium of a node. At a node three bars meet and are
subject to bending moments M,, M, and M, (figure 6a). Under the influence of these
moments the bars bend and their axes become circular arcs of radii £, R, and R,
respectively, and these circular arcs lie in three different planes. The node is in
equilibrium if the vectors of the three bending moments form a closed triangle (figure
60). Since every bending moment vector is perpendicular to its plane, the vector
triangle is closed only if the three planes (i.e. the planes of circular arcs) intersect in
a common line ». In general, this line » is not perpendicular to the common tangent
plane of the curved axes of the three bars at the node, but because of the above-
mentioned property, it is perpendicular to the plane of the vector triangle.

The whole space frame is in equilibrium if every node is in equilibrium, i.e. if the
bending moment vectors of the bars form a closed polyhedron bounded by triangles.
Due to the perpendicularity conditions, the polyhedron formed by the bending
moment vectors will be the dual of the curved edge polyhedron. The curved-edged
primal polyhedron, i.e. the model itself — due to symmetry — has three different kinds
of edges: AB, BC, CC (circular arcs of radii R,, R,, B;) as seen in figure 7a, and the
dual polyhedron has three different edge lengths: M,, M,, M, (figure 7b). The nodes of
the model do not lie on a single spherical surface. In the unit edge length case the
radii and the chord lengths of the edges are:

R, = 1.437602 14, |AB| = 0.979960623,
R, = 1.62321490, IBC| = 0.984261033,
R, = 2.07219822, |CC| = 0.990324758.

Coordinates of nodes are given in Tarnai & Gdspar (1989).

The Cg, model has two different kinds of bar forms: AA” and AA” (circular arcs of
radii £, and R,) as seen in figure 8. In the unit bar length case, the radii and the chord
lengths of the curved bar axes are:

R, = 2.45953818, |AA’| = 0.993 126401,
R, = 2.31046566, |AA”| = 0.992212954.

The model looks like a geodesic dome since all the nodes lie on a single sphere whose
radius is, interestingly, equal to R,. Therefore the curved bars which separate two

Phil. Trans. R. Soc. Lond. A (1993)
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Geodesic domes and fullerenes 151

Figure 7. The equilibrium of the space frame modelling C,g. (@) The primal curved-edged
polyhedron formed from bars. (b) The dual polyhedron formed from moments.

Figure 8. The equilibrium shape of the space frame modelling C,.

adjacent hexagons lie on the same spherical surface. The planes of the curved bars
which separate a hexagon and a pentagon do not pass through the centre of the
sphere. In this model the chord lengths contrast with the bond lengths measured by
Hedberg et al. (1991). In the model |AA’] > |[AA”], but in Cy, itself the direction of the
inequality is just the opposite: 1.398 < 1.455.

Kroto & McKay (1988) found that the shapes of stick models of larger icosahedral
fullerenes diverge from the geodesic dome form and develop shapes into icosahedral
symmetry gradually shifting to the icosahedron as to a polyhedron. Our calculations
seem to confirm this trend. The C,,, model has five different kinds of bar forms. The
five bars are shown in a simplified way by thick lines in figure 9 where the large
regular triangle composed of dashed lines is a face of the icosahedron. The bars
develop pure bending deformations except for bar AC and its symmetric replicas
which are also twisted. The unit bar lengths the radii and the chords of the curved
bar axes in figure 9 are:

R, = 2.43731583, |AB| = 0.993000754,
R,= 2.294060 14, IBB'| = 0.992101446,
R, =94.375 8743, |CCY| = 0.999995322,
R,= 4.73043037, |CC”| = 0.998 146064,

|AC| = 0.999523763.

The largest deformations occur in the neighbourhood of the vertices of the

Phil. Trans. R. Soc. Lond. A (1993)
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152 T. Tarnai

Figure 10. The equilibrium shape of the space frame modelling C,,,.

icosahedron, and the hexagon in the middle of the faces of the icosahedron becomes
flat. For the sake of brevity the coordinates of nodes are not given here; they will be
published elsewhere but the complete model is shown in figure 10. Calculations for
the model of C,,, are in progress.

5. Conclusions

The consideration of analogies between geodesic domes and fullerenes is fruitful in
both directions. At the very beginning of fullerene research, geodesic dome concepts
helped chemists to recognize the structure of these hollow carbon clusters.

In the reverse direction, fullerene studies can indirectly help in the geodesic dome
design. The intensive research on fullerenes is providing many suggestions for new
structural forms composed of hexagons and pentagons, which may be considered as
basic configurations for analysing the fundamental problem of minimum covering of
a sphere by circles and also as new configurations for geodesic domes. In this way new
geometrical results are also to be expected in the future as a consequence of the
detailed studies which are now being carried out on the fullerenes.

I thank Professor Zs. Gaspar for helpful discussions and for making calculations. This work was
supported by OTKA I/3 Grant No. 41 awarded by the Hungarian Scientific Research Foundation.
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Discussion

S. Irotma (NEC Corporation, Japan). 1 used molecular mechanics to optimize the
geometry of giant fullerenes up to Cyqy. Contrary to Professor Kroto’s observation,
as we optimize the structure approaches a sphere, so the strain is apparently
distributed throughout the molecule.

T. TARNAL A very strong bond deformation should exist in the hexagons of the result
is to be spherical.

J. P. HARE (Sussex University, U.K.). I have made an icosohedral large fullerene. To
make a spherical version of it I have to add heptagon and for every heptagon I must
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154 T. Tarnar

add an extra pentagon. Do you know any simple rules so that I can actually make
a large sphere ?

P. W. FOWLER (Exeter Unirersily. U.K.). 1 believe you require 60 heptagons and 60
extra pentagons because they have a plane of symmetry, if you are going icosohedral,
and you can do it with a slightly modified spiral algorithm.

T. TarNar. We don’t deal with dynamics; it was a static calculation. We considered
elastic bars, which are usually in sub-stress. We found the equilibrium configuration,
under which the structure has a certain shape, and in this case we can find only the
coordinates of the proper nodes. We found the planes of the curved members which
are circular or curved, and whether or not you have twisted or bent elements. In this
case the member forms a helix too, but we can make no further comment at this
stage.

P. W. FowLER. I was thinking of the actual moment from your initial guess as to the
structure towards your bent and bulging final structure. So it is a process in time, but
not actually dynamic. Furthermore, there is a chemical corollary of this description
of the domes, and the rigidity of a structure with triangles, and that is that there is
an extention to Euler’s theorem using symmetry. This says that the symmetry
spanned by the internal coordinates of a deltahedron is the same as the symmetry
spanned by the edges. What this means is that any deltahedron skeleton cannot
vibrate if it has perfectly rigid bonds. There are no true bending vibrations in
deltahedrons, so there is a kind of chemical equivalent to your description.

T. TArNAL So what can I say about a triangulated sphere is that for a long time
mathematicians believed that there was no such structure which had free motion
which would constitute a mechanism. One of them proved that such polyhedra do
not exist, but Bill Conolly (late 1970s) produced a triangulated sphere which has free
motion. This meant that it had a mechanism involving finite motion so if you wish
to consider it as a structure that can vibrate, it has motion that causes no stress. Such
a structure exists. Later a German mathematician produced another, so we have
some examples.

Phil. Trans. R. Soc. Lond. A (1993)
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igure 4. Polyhedron model of locally minimum covering of the sphere by 16 equal circles.
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igure 5. Polyhedron model of locally minimum covering of the sphere by 32 equal circles.
Yeprinted from Tarnai & Wenninger (1990) with permission of Structural Topology (Montreal) and
r M. J. Wenniner.)
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